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Viscosity of Concentrated Polymer Solutions. 
Application of a Free-Volume Treatment to Solutions 

of Poly(viny1 Chloride) in Cyclohexanone and to 
Other Polymer Solutions 
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Synopsis 
The Kelley-Bueche free-volume treatment of the viscosity of polymeric solutions has 

been applied to the previously reported data on poly(viny1 chloride)--cyclohexanone 
solutions and to several other polymer-diluent systems. It has been shown that the 
theoretical equations, based on the assumption of the additivity of free volumes of the 
components, are capable of predicting with remarkable accuracy the concentration, 
temperature, and molecular weight dependence of the viscosity of the investigated 
solutions over very large ranges of the variables. 

INTRODUCTION 

In  a previous paper1 a number of data on the concentration and molec- 
ular weight dependence of the viscosity of poly(viny1 chloride) (PVC) in 
cyclohexanone were reported. It was shown that the description of this 
system as well as of other polymer solutions by means of empirical equations 
cannot give satisfactory results over broad ranges of the variables. 

A theoretical treatment of the viscosity of polymer solutions, based both 
on the Bueche model of flow for undiluted polymers and on the free-volume 
concept, has been presented recently by Kelley and Bueche.2 This paper 
discusses the extension and application of the Kelley-Bueche treatment to 
changes of concentration and molecular weight for the system PVC- 
cyclohexanone as well as for other polymer-diluent pairs for which data 
are available over broad ranges of concentration, molecular weight, and 
temperature. 

FREE VOLUME REPRESENTATION 

A number of theories have been proposed to interpret the viscosity of 
simple liquids.3 The equations concerning the macroscopic behavior of 
liquids are usually derived from considerations on microscopic models, 
and the theories more widely applied are based on the concept of a liquid 
structure which is assumed to be actually full of cavities or  hole^.^-^ 
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T h y  constitute 211 extra volumc or “frec volund’ v, which has been defined 
:is the cxccss of the specifi(* volumc of the liquid v ovcr that of thc corrc- 
sporrding glass a t  :hsolutc zcro uU: 

Of = 1 - UIJ (1) 

Assuming that the molecular motions are permitted only if a free volume 
is available, the liquid fluidity should increase with vf, as suggested by 
Batschinki.’ 

The equation relating the viscosity tc the free volume, first given by 
Doolittle,* has been derived theoretically by Buecheg and Cohen and 
Turnbulllo on the basis of a liquid model of hard spheres within which there 
is a statistical redistribution of the free volume: 

In 11 = A + (b/f) (2) 

where b is a constant of the order of unity and f is the fractional free volume, 

The effect of the temperature on viscosity is primarily due to the increase 
in free volume resulting from the thermal expansion of the liquid. For 
glass-forming liquids above their glass transition temperature To,  it is 
generally assumed that the fractional free volume is given by: 

f = v,/v. 

f = f, + OAT - To) (3) 

where f, is the fractional free volume at T ,  and a,, the expansion coefficient 
of free volume, is approximately given by the difference between the ex- 
pansion coefficient of the liquid a t  and of the glass a,: 

a ,  a1 - a,  (4) 

On combining eqs. (2) and (3), written at temperatures T and T,, the well- 
known equation of Williams-Landel-Ferry (WLF) l1  can be derived : 

ln (d117-0) = --b(T - T,)/fo[df,/af) + T - To1 (5) 

Equation (5) applies to numerous liquids, both simple and p ~ l y m e r i c , ~ ~ - ’ ~  
with a value near unity for b and the “universal” average values of 0.025 
forf, and of 4.8 X 

For polymers in the rubbery or molten state, the WLF equation describes 
the effect of the temperature on the viscosity, while the effect of the molec- 
ular weight on 7 is given by the empirical equation 

deg.-’ for a,. 

11 = K:M~’  (6) 

where K x  is a constant a t  constant temperature and a‘ has the value of 3.4 
above some critical molecular weight M,, while below M ,  a’ is of the order 
of unity.l5 

The transition from the low-power dependence to the 3.4-power depend- 
ence a t  the critical molecular weight has been interpreted by Bueche16 on 
the basis of a molecular flow model, valid for any polymeric system, in 
which the macromolecules form a transient network structure through 
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chain entanglements. The formation of such entanglements, of course, 
requires sufficient length and concentration of the macromolecules. When 
the numher of entanglements is below some critical value (less than two per 
molecule), the polymer network canriot exist, and the polymer chains iri 
motion are subjected to a viscous resistaiice proportioiial to their dimension, 
as in dilute solution. The viscosity is given by 

7 = k‘CM& (7) 

where C is the concentration, M the molecular weight of the polymer, 
and to is the “segmental friction factor,” proportional to the local, or 
microscopic, viscosity encountered by the molecular segments in their 
motion.16 Equation (7) is substantially similar to the equation derived, 
in the molecular theory of Rouse,” for dilute solutions of macromolecules: 

9 - qs = (N a2/36 Mo2)CM {o (8) 
where vs  is the solvent viscosity, N Avogadro’s number, Mo the monomer 
molecular weight, {O the monomeric friction factor, and a is defined by the 
relation: 

= M ~ ( ? / M )  (9) 

(r3)O.S being the root-mean-square end-to-end length of the entire macro- 
molecular chain in solution. n 

Above the critical concentration of chain entanglements, a molecule in 
motion is retarded by them, and following the Bueche model this results 
in a viscosity proportional to the 3.5 power of molecular weight. A more 
detailed form of eq. (6), as given by Bueche, is the following: 

7 = kC4M3a5& (10) 

The viscometric properties of polymer solutions can be given by eqs. (7) 
and (10) if the concentration and temperature dependence of f o  is known. 
To describe it, Kelley and Bueche2 take the fraction factor &I to be a func- 
tion of the free volume fraction f alone, as given by eq. (2) if 11 is substi- 
tuted by #o, and assume that the fractional free volumes of the polymer f2 

and of the solvent fi are strictly additive in solution, so that the total 
fractional free volume in the system is given by 

F = + d z  + (1 - 42)fi (11) 

where cpz is the volume fraction of the polymer in the solution. 
(2 ) ,  (lo), and (11) can be combined to give: 

Equations 

ln(s/B) = 4 In C + [+& + (1 - +df11-’ (12) 
where B = KM3e5, with the constant K resulting from the grouping of the 
various constants of the above-written equations. 

Since the free volume fractions fi and fl are given by eq. (3) as functions 
of the glass transition temperatures and of the expansion coefficients of 
polymer and solvent, eq. (12) should describe the effect of temperature, 



24 G. PEZZIN 

concentration, and molecular weight on the viscosity of polymer solutions 
with the aid of only one adjustable parameter, K. Ilelley and Bueche 
have shown that it could be applied to three different polymer-solvent 
systems in relatively large ranges of concentration and a t  different tem- 
peratures. The dependence of B on molecular weight was not explored 
in their work. 

Moreover, i t  must be noted that eq. (12) applies only to solutions in 
which the molecules participate in an entangled network of macromolecular 
chains. At low concentrations and/or low molecular weight the network 
cannot exist, the molecules being separated from each other or too short 
to entangle. In  these conditions, an extension of the Kelley-Bueche 
treatment leads, from eqs. (2) , (7), and (11), to  the relation: 

ln(v/B') = In c + [ M i  + (1 - (Pz)fil-' (13) 
where B' = K'M. 

Equations (12) and (13) should predict the viscosity of polymer-solvent 
systems above their glass transition temperatures over the entire range of 
concentration and for any molecular weight. A t  constant molecular 
weight and temperature, eq. (13) should apply below, and, eq. (12) above a 
critical concentration C*, where the two curves v/C cross' each other (and 
above which chain entanglements form). 

COMPARISON WITH EXPERIMENTAL DATA 

Poly (vinyl Chloride)-Cyclohexanone 

The application of eqs. (12) and (13) to the results presented previously' 
on PVGcyclohexanone solutions requires the knowledge of the fractional 
free volumes fi and fi of polymer and solvent at 30°C. As this tempera- 
ture is below the glass transition temperature of the polymer, reported as 
82°C. by several authors,13819-21 the value of f2 at 30°C. can either be con- 
sidered constant (for any temperature T < T,) and equal to f,18 or cal- 
culated, even at T < T,, by means of eq. (3). In  this work i t  has been 
found that the second method gives better results, as will be shown later 
for a different solvent-polymer system. 

However, i t  must be noted that eq. 3 gives absurd (negative) values of fi 

for temperatures lower than To = T ,  - (f,/a,). This presumably was the 
case for the polystyrene-diethylbenzene solutions at 30°C. reported by 
Kelley and Bueche.2 Therefore i t  must be stated that eq. (3) can be used 
only for positive values of fi, while for temperatures lower than To the value 
offiiszero.13 

For PVC the expansion coefficient of free volume a,, as calculated from 
the application of the WLF equation to dielectric relaxation processes,14 
is 5.0 x 10-4 deg.-l, which agrees well with the difference az - a, ob- 
tained from volumetric measurements (4.8 X deg.-I).I3 Inserting 
this value in eq. (3) gives a free volume fraction fi a t  30°C. which is prac- 
tically zero. 
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Fig. 1. Logarithm of (7 - 72) plotted against the polymer weight fraction wz for the 
PVC samples A, D, and F: (- -) theoretical eqs. (12) and (13) at 30°C.; (OAO) experi- 
mental data from reference 1. 

The value of fi at 30°C. can be evaluated in the following way. Since 
the experimental T, for cyclohexanone is unknown, i t  may be calculated by 
the approximate relation T, 0.65 T,, where T, is the melting tempera- 
p e r a . t ~ r e . ~ ~ v ~ ~  The resultant T, is -lZO"C., close to the value experi- 
mentally determined for cyclohexanol and for a number of alcohols and 
glycols. 24 The thermal expansion coefficient of cyclohexanone has been 
determined as 9.2 X deg.-l at room temperature.' Taking the ex- 
pansion coefficient of the glass approximately as deg.-', the value of 
8 X deg.-' can be used as the aI of cyclohexanone. The resultant 
free volume fraction fl a t  30°C. is 0.145. Insertion of fi and fi in eqs. (12) 
and (13) gives ln(q/B) and ln(q/B') as a function of concentration. This 
can be expressed as weight fraction w2, calculated from 42 by assuming the 
volumes of solvent and polymer to be additive. The theoretical viscosity- 
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0 013 5 QI at s 0.2 

w2 

Fig. 2. Logarithm of ( q  - 9.) plotted against w2 for the PVC samples B, C, and E. 
Key to figure same as in Fig. 1. 

concentration curves as thus obtained are compared with the experimental 
results in Figures 1-3. Following eq. (8), the viscosity of solvent has been 
subtracted from the solution viscosity in the experimental data. 

Superposition with the theoretical curves has been achieved by vertical 
translation along the logarithmic viscosity axis. The amount of transla- 
tion gives the values of the adjustable parameters B and B’, which are 
collected in Table I. 

It may be seen from Figures 1-3 that for the polymers having high 
molecular weight the eq. (13) (which should be valid for nonentangled solu- 
tions) can be superposed to the experimental data only over a narrow range 
of concentrations, from w2 = 0.003 to w2 = 0.01, while for the low molec- 
ular weight sample H the same equation can be applied successfully up to 
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I. 
/ 

Sample G 

0 -I H 

0 OJ 0.2 0.3 0.4 

w 2  

to figure same as in Fig. 1. 
Fig. 3. Logarithm of (7 - v 8 )  plotted against wz for the PVC samples G and H. Key 

the weight fraction 0.16. On the contrary, eq. (12) (valid for entangled 
solutions) describes well the experimental data for samples of high molec- 
ular weight above weight fractions of the order of 0.05, whereas it cannot 
be applied to samples H at a w2 lower than 0.4. The applicability of both 
the equations is therefore determined by the molecular weight and the 
concentration of the solution. As may be seen in Figures 1-3, the main 
characteristics of the concentration dependence of the viscosity of PVC- 
cyclohexanone solutions is described satisfactorily by the Kelley-Bueche 
treatment. Moreover, it can be shown that also the molecular weight 
dependence of viscosity is correctly predicted by it. I n  fact, when the 
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Fig. 4. Log B and log B’, as derived from Figs. 1-3, plotted against the logarithm of the 
molecular weight M ,  of the PVC samples of Table I. 

TABLE I 
Values of the Parameters B, B’ and K,, K,’ (see Text) for PVC-cyclohexanone 

Solutions at 30°C. 
~ 

- PVC 
sample M ,  X l W 3  log B log B‘ log Kz log K,’ 

~ 

A 230 2.30 -2.30 -11.2 -6.2 
I3 174 2.00 -2.39 -11.1 -6.1 
C 151 1.52 -2.48 -11.4 -6.2 
D 110 1.23 -2.66 - 11.2 -6.2 
E 80 0.84 -2.74 -11.1 -6.1 
F 70 0.49 -2.83 -11.2 -6.2 
G 26 -0.85 -3.20 -11.1 -6.1 
H 10.5 - -3.50 - -6.0 
I 100 1.33 -2.62 -10.9 -6.1 
L 112 1.04 -2.66 -11.4 -6.2 
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parameters B and B' are plotted 011 log-log paper against the weight- 
average molecular weight of the polymers M,, two straight lines are ob- 
tained (Fig. 4). Their slopes are 3.3 and 0.9, respectively, in close agree- 
ment with the theoretical slopes 3.5 and 1.0 required by eqs. (12) and (13). 

There is, however, a notable discrepancy between theoretical curves and 
experimental data, since these latter show no sign of a sudden change in 
the slopes of the log(T - v8) versus w2 curves plotted in Figures 1-3 while 
the theoretical curves cross, a t  a given critical concentration C*, with very 
different slopes. In  a relatively large range centered around C*, therefore, 
the experimental data differ consistently from the predicted theoretical 
curves. As noted previously,' in literature there is no evidence of a transi- 
tion in the slopes of the log v w 2  curves for polymer-solvent systems, and 
it will be shown later that the discrepancy of Figures 1-3 will be confirmed 
by the data of other authors, as discussed below. 

APPLICATION TO OTHER POLYMER SOLUTIONS 
The application of eqs. (12) and (13) to viscometric data on polymer 

solutions reported in the literature requires only the knowledge of the glass 
transition temperatures and of the expansion coefficients of polymers and 
solvents. These values are usually known or can be estimated with 
reasonable accuracy. 

Unless otherwise indicated, the value off ,  = 0.025 was used in these 
comparisons, while the numerical value of a, for some systems was found 
in the literature and for other systems was estimated from the thermal 
expansion coefficients through eq. (4). For temperatures lower than the 
T ,  of the polymers, the value of fi was calculated from eq. (3). 

Some of the available viscoinetric data have been reviewed, and their 
characteristics are summarized in Table 11. 

The theoretical curves calculated from eq. 12 are superposed to the 
experimental data by using the procedure described above. In  some cases 
the curves given by eq. (13) have also been calculated. 

Polyisobutylene-Isooctane 
Figure 5 shows the results obtained from the data of Tager et al.25 on the 

system polyisobutylene-isooctane a t  20°C. Five samples having molec- 
ular weights from 900 to 1.2 X 106 were explored. The values of 9 a t  
various +2 are compared with the theoretical curves calculated by using the 
data of Table 11. It may be seen that eq. (12) can be applied with ex- 
cellent results in the range of 42 from 0.1 to 1 for all samples except for 
that having the lowest molecular weight. The values of log B, when 
plotted versus log M ,  give a straight line with slope 3.3, which agrees well 
with the theoretical value of 3.5 (see Fig. 6). 

Poly(decamethy1ene Adipate)-Diethyl Succinate 
The application of eqs. (12) and (13) to Flory's data on this systemzF 

The value off, was taken as 0.035 for this polymer.27 is seen in Figure 7. 
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Fig. 5. Logarithm of (7 - 7.) plotted against the polymer volume fraction $2 for the 
polyisobutylene-isooctane solutions.26 Figures denote molecular weight of the polymers: 
(0 )  experimental points; (- -) eqs. (12) and (13) at 20°C. 

The first equation applies from w2 = 0.3 to w2 = 1, the second in a rel- 
atively narrow range of low concentrations. A gradual transition from 
one theoretical curve to the other characterizes the viscosity data. 

Poly (ethyl Methacrylate)-Diethyl Phthalate 

Some data on the system poly(ethy1 methacrylate)-diethyl phthalate 
(DEP), supplied in numerical form by Fujita,28 are plotted in Figure 8 
together with the curve described by eq. 12. In the range of tempera- 
tures going from 1 to 150”C., the theoretical equation applies quite success- 
fully from wz = 0.2 up to w2 of the order of 0.9. The values of log B show 
a slight dependence on temperature. 

Two sets of data, obtained well below the glass transition temperature 
of the polymer (65°C.) can be used to show that under these conditions 
the free volume fraction of the polymer fi must be calculated by eq. (3) in 
order to attain the correct theoretical description. In Figure 9 the viscos- 
ities measured at  1 and at  20°C. are compared with the corresponding 
curves of Figure 8 [calculated with f2 values given by eq. (3)] and also 
with two theoretical curves calculated by assuming for f2 the “universal” 
value off, = 0.025 (which has been suggested to remain constant below 
TOIS). It is apparent that the second procedure must be discarded. 
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Fig. 6. Log U ,  ss derived froin Figure 5 plotted against log M of the polyisobutyleiie 
samples. 

Poly(buty1 Methacrylate)-DEP 

Data on the poly(buty1 methacrylate)-DEP system, extending over the 
entire concentration range,28 may illustrate the validity of both eqs. (12) 
and (13). The first equation is compared in Figure 10 with the experi- 
mental points, while eq. (13) is plotted, together with the viscosity data, 
in Figure 11. From w2 = 0.3 and up to undiluted polymer, the agreement 
between eq. (12) and experiment is good, and in the range of weight frac- 
tions from 0.01 to 0.1 there is a satisfactory agreement with eq. (13). The 
values of log B and log B’ varies slowly with temperature. As found pre- 
viously for other systems, there is no evidetice iii the cslwrimetital dntn of 
a sudden transition from the flow region described by eq. (13) to that 
described by eq. (12). 
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Fig. 7. Logarithm of (7 - ?la) plotted against w2 for the poly(decamethy1ene adipatek 
diethyl sucoinate system:26 (--) eqs. (12) and (13) a t  79°C.; (0 )  experimental data. 

Poly(viny1 Acetate)-DEP 

Fox and Allen30 have reported in algebraic form their results on this 
system. Samples varying in molecular weight from 8000 to 1.3 X lo6 
were studied in the range of temperatures from 50 to 157°C. The multi- 
constant empirical equation used by Fox and Allen is compared in Figure 
12 with eq. (12) for a sample having a molecular weight of lo5 a t  three tem- 
peratures. An excellent fit is found over a large range of concentration in 
any case. A similar comparison for a sample having molecular weight of 
8000 is also shown in Figure 12 for eq. (13) which fits well the experimental 
data up to a volume fraction of 0.6. The same theoretical curves fit the 
data reported by K i ~ h i r n o t o ~ ~  for the poly(viny1 acetate)-DEP system 
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Fig. 8. Logarithm of (7 - va) plotted against wz for the poly(ethylmethy1 acrylatek 
DEP system:28 (- -) eq. (12) at the temperatures indicated; (0 )  experimental data. 

over large ranges of concentration and a t  temperatures varying from 10 
to 100°C. (see Fig. 13). 

Poly(methy1 Acry1ate)-DEP 

The results obtained for this system by Fujita and I l i l a e k a ~ a ~ ~  are shown 
in Figure 14. For all the temperatures explored the agreement is satis- 
factory from weight fraction 0.3 up to undiluted polymer. Deviations 
from the experimental data are found only at  20°C. for the high concentra- 
tion range, where the viscosities are of the order of 10’0 poises and the 
experimental accuracy can be low. A satisfactory comparison with eq. 
(13), not shown in Figure 14, is also found at  low concentrations. Other 
polymer-solvent systems for which data are available only over limited 
conceritratiori ranges have been also reviewed, arid the results were found 
to be similar to those discussed above. 

CONSIDERATIONS OF THE FREE-VOLUME TREATMENT 

The examples shown above demonstrate that the free-volume treatment 
can predict with considerable accuracy the viscometric properties of many 
different systems. It must be noted that in some cases the experimental 
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0.2 0.4 0.6 0.8 I 

w2 

Fig. 9. Logarithm of (7 - 7.) at temperatures below the T, of the polymer, plotted 
(-) eq. (12) with values of f 2  derived by means of against w2 for the system of Fig. 8. 

eq. (3); (- -) eq. (12) withf2 = 0.025; (0 )  experimental data. 

data have been successfully described over very large ranges of molecular 
weight (from l o 3  to 106), of concentration, of temperature (from 0 to 
15OoC.), and sometimes over the viscosity range of 10IO-fold, as in Figure 
10. 

While the agreement between theory and experiment supports the sub- 
stantial validity of the treatment, it may be interesting to review the 
assumptions on which eqs. (12) and (13) are based: (a) the flow of polymer 
solutions below and above the critical concentration of chain entangle- 
ments is described by the Bueche equations, eqs. (7) and (10); (b) the 
temperature and concentration dependence of the friction coefficient of a 
polymeric chain in solution is determined by the free volume of the solution 
through the Doolittle equation eq. (2); (c) the fractional free volume of 
the solution is the sum of the free volume fractions of the components in 
their unmixed states [eq. (11) 1; (d) the glass transition temperature T ,  
represents for both polymer and solvent an ‘?so-free volume’’ state. Above 
T ,  the fractional free volume is a linear function of temperature in the form 
given by eq. (3 ) ,  which applies, as shown previously, also between To 
and T,. 

Assumptions (a) and (b) are justified if it is kept in mind that the first 
one is supported by the successes obtained by the application of the Bueche 
concept of coupling entanglements to the interpretation of the molecular 
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Fig. 10. Logarithm of (7 - 7.) plotted against 202 for thepoly(buty1 methacrylate)-DEP 
system:" (- -) eq. (12); (0 )  experimental data. 

weight dependence of the viscosity of polymer  melt^,^^,^^ and the second 
one by its widespread application not only to the viscosity of simple 
liquids and of polymer melts," but to the diffusion of gases in polymers,34 
the retarded volume contraction of a polymer cooled rapidly to tempera- 
tures near the dielectric relaxation processes in polymers and plas- 
ticized polymers, l4 and the electrical conductance in fused salts.36 

Assumption (c), concerning the additivity of free volumes, can be con- 
sidered to be only a first approximation. It was shown previously' that 
the total volumes are additive within 0.2% for the system PVC-cyclo- 
hexanone, but there may be relatively large volume contractions for plasti- 
cized PVC14 or for other polymer sol~tions.~7 However, for the systems 
examined in this work the assumption of additivity seems to be relatively 
justified by the results obtained. 
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Fig. 11. Logarithm of (7 - 7.) plotted against w2 for the system of Fig. 10: (- -) eq. 13 
(at low concentrat,ions) and eq. (12) (at w2 > 0.25); (0 )  experimental data. 

Assumption (d) is widely a c ~ e p t e d , ~ ~ ~ ~ ~ ~ ~ ~ ~ ' ~  but the "constant" frac- 
tional free volume at T ,  has been defined in different ways, and three 
substantially different values of f, have been reported: 0.025,11,13~*4~3s 
0.12,34v39-41 and 0.20.42 These discrepancies result from the different models 
and assumptions used in evaluating f,. It must be pointed out that only the 
first value can be applied successfully in the present interpretation of the 
viscosity of polymer solutions. The value of T ,  for low molecular weight 
solvents varies from approximately 80°K. for hydrocarbons to 110°K. for 
alcohols, 150°K. for glycols, and 190-250°K. for typical plasticizers of the 
phthalic ester ~ e r i e s . ~ ~ ~ ~ ~ ~ ~ '  The value of az for many liquids is approxi- 
mately 1.3 X deg.-1.6s13343 The expansion coefficient of the crystalline 
solids, practically equal to that of the glasses, is 2-4 X deg.-', 4 4  so 
that for solvents the expansion coefficient of free volume should be approxi- 
mateiy deg.-', as assumed by Iielley and Bueche. An independent 
confirmation of the correctness of this value can be derived from the data 
on free volume of benzene and CC14 reported by Miller45 for different tem- 
peratures and calculated from the data of Bridgman on the pressure de. 
pendence of viscosity. In  conclusion, the assumptions listed above can 
be considered reasonable for systems for which there are no strong inter- 
actions between polymer and solvents leading to large volume changes in 
the solution process. 

DISCUSSION 
In  some previous analyses of the viscometric properties of concentrated 

polymeric solutions enipiricnl reduction schemes have been used to relate 
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Fig. 12. Logarithm of (7 - 7.) plotted against qh for the poly(viny1 acetate)-DEP sys- 
tem:" (0 )  experimental data derived from the empirical equation given by Fox and Al- 
len:" (- -) eq. (12) for the upper part of the figure ( M  = 106) and eq. (13) for the lower 
part ( M  = 8000). 

the solution viscosity to the polymer concentration and molecular 
weight.l?ls The results obtained in the present work show conclusively 
that a treatment based on free-volume concepts can interpret with con- 
siderable accuracy the experimental data for widely different polymer 
solutions, and therefore it eliminates the need for empirical correlations. 
The Kelley-Bueche equation, eq. (12), which should hold for solutions in 
which the macromolecules are entangled, can usually be applied above 
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Fig. 13. Logarithm of (7 - q 8 )  plotted against w2 for the poly(viny1 acetate)-DEP sys- 
tem? (- -) eq. (12); (0 )  experimental data. 

approximately the polymer weight fraction 0.3, but for some systems it 
can be applied down to w2 as low as 0.05 (see Fig. 1) or 0.1 (Figs. 5 and 8). 
It may be observed that the lower limit of validity of eq. (12) corresponds 
to solution viscosities of the order of 1-10 poises. At lower concentrations 
the molecular chains should not be entangled, and eq. (13) should apply. 
However the sharp transition from one flow region to the other required 
by the theory is not observed experimentally, and eq. (13) holds only 
below a portion of the experimental curves which remains unpredicted by 
the theory. 

For polymer melts, an abrupt change in the molecular weight dependence 
of viscosity is normally found a t  the critical chain length above which a 
network structure is formed through intermolecular entanglements.15 
However, for dimethylpolysiloxanes46 and poly(viny1 acetate) ,47 the transi- 
tion is rather gradual, as found in the present work for the concentration 
dependence of viscosity (Figs. 1-3, 7,ll).  This could be interpreted as 
evidence that for some systems the entanglement network can be formed 
only gradually with increasing chain length or concentration of the pol- 
ymer. 

The flow region over which eq. (13) is applicable is limited to w2 lower 
than 0.05. It extends to polymer weight fractions of 0.1 for the DEP 
solutions of poly(buty1 methacrylate) (molecular weight 110,000, and to 
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Fig. 14. Logarithm of (7 - 7.) plotted againt wz for the poly(methy1 acry1ate)-DEP 
syst,em:32 (- -) eq. (12); (0 )  experimental data. 

0.15 for the cyclohexanone solutions of the PVC sample having the lowest 
molecular weight, M ,  = 10,500. For the poly(viny1 acetate)-DEP solu- 
tions investigated by Fox and Allen, the applicability of eq. (13) to R 

sample having M = 8000 goes up to polymer volume fractions of 0.6-0.8, 
as may be seen in Figure 12. For these solutions, apparently, the macro- 
molecules do not entangle until such high concentrations are reached. 

For a given polymer-solvent system the critical concentration for chain 
entanglements should be approximately inversely proportional to the 
polymer molecular weight.'* This can be demonstrated, for the PVC- 
cyclohexanone solutions, by plotting on a log-log paper the critical volume 
fraction &,* a t  which the curves of eqs. (12) and (13) cross each other, 
against the polymer molecular weight M,. As shown in Figure 15, one 
obtains a straight line which is described by the equation: 

c&M, = 4000 (14) 
from which the critical molecular weight for chain entanglement in the un- 
diluted polymer results to be approximately 4000. 

From Figure 7 it is seen that the corresponding figure for the poly(deca- 
methylene adipate) is approximately 2000, while a much larger molecular 
weight between entanglements is derived from Figure 11 €or poly(buty1 
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Fig. 15. Logarithm of the critical fraction & (see text) plotted against the logarithm of 
the molecular weight M ,  of the PVC samples of Table I. 

methacrylate) i.e., 30,000. From Figure 11 i t  may be seen also that the 
critical concentration for chain entanglement is substantially temperature- 
independent in the range of temperature of 10-120°C. for this system. 

In all the examples shown in the present paper, the theoretical curves 
were adjusted to fit the experimental results over a given range of concen- 
tration. This required only changing the value of the parameters B and 
B', while the form of the curve, being not adjustable, provided the critical 
test of the agreement between theory and experimental data. The em- 
pirical parameters B and B', as shown in Figures 4 and 6, depend on the 
3.5 and 1.0 power of molecular weight. It may be seen from Table I11 
that they vary only slightly with temperature [the maximum activation 
energy is found to be of the order of 3000 cal./mole, for the poly(buty1 
methacrylate)-DEP solutions of Figure 101 and as a first approximation, 
therefore, the values of B and B' for a given system can be considered in- 
dependent of temperature. 

In  order to compare their values for different polymer-solvent systems, 
they can be written: 

B = K,Z3e5 (15) 

B' = K,'Z (16) 

where 2 is the number of atoms in the chain (for vinyl polymers 2 is twice 
the number of monomer units in the chain), and for polydisperse polymers 
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TABLE I11 
Values of the Parameters B, B', and K,, K,' (see Icxl.) for 

Several Polymer-Solvent Systems 

Polymer 

Polyisobu- 
tylene 

Poly( deca- 
methylene 
adipate) 

Poly( ethyl 
meth- 
acrylate) 

Poly(buty1 
meth- 
acrylate) 

Poly(viny1 
acetatep 

Poly(viny1 
acetate)b 

Poly(methy1 
acrylate) 

Solvent 

Isooctane 

Diethyl 
succinate 

Diethyl 
phthalate 

Diethyl 
phthalate 

Diethyl 
phthalate 

Diethyl 
phthalate 

Diethyl 
phthalate 

M X I', log log log log 
10-3 oc. u 13' K Z  K,' 

1200 
640 
110 
20 

16 
0.9 

- 
- 
- 
I 

- 
- 

111 

1300 
1300 
1300 
100 
100 
100 

8 
8 
8 

99 

130 

20 5.1 - -11.1 
-11.6 20 3.7 - 
-11.5 20 1 .1  - 

20 -0.8 -2.85 -10.8 
20 - -3.50 - 
79 -0.05 -2.70 -10.6 

1 
20 
40 
70 

110 
150 
10 
20 
30 
40 
60 
80 

100 
120 
50 

100 
157 
50 

100 
157 
50 

100 
157 
10 
20 
30 
40 
50 
60 
70 
80 
90 

100 
20 
40 
60 
80 

100 

-0.60 
-0.35 
-0.25 
-0.25 
-0.55 
-0.90 
-2.15 
-1.9 
-1.7 
-1.65 
-1.4 
-1.5 
-1.3 
-1.4 

4.30 
4.25 
4.40 
0.50 
0.40 
0.50 - 
- 
- 

-0.8 
-0.8 
-0.8 
-0.9 
-0.9 
-0.95 
-0.9 
-1.0 
-1.0 
-1.0 
-0.5 
-0.4 
-0.3 
-0.3 
-0.3 

- 
- 
- 
- 
- 
- 

-3.57 
-3.47 
-3.37 
-3.25 
-3.10 
-3.10 
-2.92 
-2.90 - 
- 
- 
- 
- 
- 

-2.30 
-2.30 
-2.10 
-2.97 - 
- 
- 
- 
- 
- 
- 
- 

-2.50 
-2.92 
-2.62 
-2.42 
-2.37 
-2.27 

- 
- 
- 
- 
- 
- 

-13.3 
-13.1 
-12.9 
-12.8 
-12.6 
-12.7 
-12.5 
-12.6 
-11.4 
-11.4 
-11.3 
-11.3 
-11.4 
-11.3 
- 
- 
- 

-12.6 
-12.6 
-12.6 
-12.7 
-12.7 
-12.7 
-12.7 
-12.8 
-12.8 
-12.8 
-12.7 
-12.6 
-12.5 
-12.5 
-12.5 

- 
- 
- 

-5.7 
-5.0 
-5.7 

- 
- 
- 
- 
- 
- 

-6.7 
-6.7 
-6.6 
-6.4 
-6.3 
-6.3 
-6.1 
-6.1 
- 
- 
- 
- 
- 
- 

-4.6 
-4.6 
-4.4 
-6.3 
- 
- 
- 
- 
- 
- 
- 
- 

-5.9 
-6.4 
-6.1 
-5.9 
-5.8 
-5.8 

a Data of Fox and A1len.m 
Data of Kishimito.31 
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thc correct averagc Z is, of course, the weight average.15 The values of 
log K ,  and log K,‘ arc shown in Tables I and 111, and it may be soon that 
thcy are relatively constant for all the systems examined. Averaging 
the values within any polymer-solven t system and averaging again the 
figures obtained in this way, gives for the average “universal” values of 
K, and K,‘: 

log K, = -11.8 f 0.7 

log K,’ = -5.75 f 0.5 

0 7 )  

(18) 

where the deviations are average deviations calculated from all the data of 
Tables I and 111. It may be observed that with the values given by the 
relations (17) and (18) it is possible to calculate, on completely theoretical 
grounds, the viscosity of any polymeric system, within a factor of approxi- 
mately 5, at  any molecular weight and temperature, and at  any concentra- 
tion, except for the region around C* where the theoretical curves cross 
each other. Taking into account the magnitude of the possible errors in- 
troduced in the evaluation of log K ,  and log K,‘ by the approximate char- 
acteristics of the free-volume treatment, by the effects due to the polydis- 
persity of the polymers investigated (use of approximated &ifm), and by the 
visual fitting of the theoretical curves to the experimental data, the relative 
constancy of the values of these parameters can be considered remarkable 
(see Tables I and 111). While this constancy should be related to the con- 
stancy of the free volume and of the segmental mobility of the macro- 
molecules in given standard states, the understanding of its exact physical 
meaning is not easy and requires further investigations. 

As may be derived from the data of Table 11, eqs. (12) and (13) can be 
successfully applied to polymeric solutions for which the free volume 
fraction of the polymer fz has values lying between zero [for poly(viny1 
chloride) at  30°C. and for poly(ethy1 methacrylate) at  l”C.1 and approxi- 
mately 0.09 [for polyisobutylene at 20°C. and for poly(viny1 acetate) at  
157OC.1, with the single high figure of 0.16 for poly(decamethy1ene adipate) 
at 79°C. The free volume fractions of the solventfl are in the range O . l &  
0.22, so that the total fractional free volume of the solutions can be seen 
to vary within the range 0.03-0.21. 

The free-volume treatment of polymer solutions can be therefore applied 
even when the total free volume fraction F = &.fz + +f1 is as high as 0.2, 
while it has been predicted14* by analogy with the well-known limitation 
of the applicability of the WLF equation (5) to values of fi lower than 
0.08, that the application of free volume concepts to polymeric solutions 
would be limited to values of F lower than 0.08. 

In the Kelley-Bueche treatment, the effects of temperature, concentra- 
tion, molecular weight, and solvent type on viscosity are assumed to be 
due to changes of free volume and of entanglement couplings between the 
macromolecules. Fujita and Kishimoto49 have also interpreted, on the 
basis of free volume, the concentration dependence of the viscosity and of 
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the diffusion coefficients of concentrated polymeric solutions. Their 
equation can be written 

where qo is the viscosity of the polymer and q the viscosity of the solution 
at the volume fraction 42. In  the Fujita-Ilishinioto equation the free 
volume fractions of polymer and solvent f2 and fi are treated as experi- 
mental parameters, which can be determined from the linear plot of the 
left side of eq. (19) against (1 - + ~ ) - l .  Equation (19) can be derived 
directly from the Kelley-Bueche equation, eq. (13), and it should there- 
fore be applicable only to nonentangled solutions. The equivalent equa- 
tion for entangled solutions, derived from eq. (12), is 

which differs from eq. (19) by the additive term In $2 on the denominator 
of the left side. The difference can be, in some cases, relatively small for 
high concentrations of polymer in the solutions, and it has been shown in 
effect by Fujita and M a e k a ~ a ~ ~  that their data on the poly(methy1 acry- 
late)-DEP system can be correctly described by eq. (19) only over rel- 
atively narrow ranges of concentration (42 larger than 0.7-0.8). For com- 
parison, it must be noted that eq. (12) describes the same data over a range 
of concentration much broader (toz greater than 0.3), as may be seen in 
Figure 14. 

CONCLUSION 

The results described in the present work show the usefulness of the free- 
volume concept in the study of polymeric systems. The Kelley-Bueche 
equations, eqs. (12) and (13), represent an important extension of the 
Bueche equation, eq. (6) (which describes the molecular weight dependence 
of viscosity for molten polymers) and of the Williams-Landel-Ferry equa- 
tion, eq. (5) (which gives the temperature dependence of the viscosity of 
molten polymers). It may be seen in fact that both equations are the 
limiting form of the eqs. (12) and (13) for 42 = 1. 

The treatment discussed above is limited, of course, to solutions in which 
the volume additivity is a reasonable assumption or has been experimentally 
verified, but it applies well to solutions where the fractional free volume F 
is as high as 0.2. It gives, therefore, an adequate representation of polymer 
solutions within very large ranges of concentration and temperatures. 

The author wishes to express his appreciation to Dr. N. Gligo, who assist,ed in part of 
the work, and to Dr. Talamini for helpful discussions. 
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R6ssum6 
Les donnkes obtenues au cours d’une Btude prkcedente sur les propriBtBs viscosi- 

mktriques de solutions concentrkes de chlorure de polyvinyle dans la cyclohexanone ont 
6th interprktkes sur la base du traitement du volume libre de Kelley-Bueche. On a 
montrk que la dkpendance de la viscositk en fonction de la concentration et du poids 
molBculaire dans ce systkme peut Atre prBdite avec une precision remarquable. Une 
extension de ce traitement permet la description de solutions relativement diluBes. Les 
Cquations du volume libre ont Btk appliqukes B un nombre de donnBes concernant des 
solutions polymkriques, disponibles dans la littkrature, et ont Btk trouvBes applicables 
dans de larges domaines de viscositk/tempirrature et de poids molBculaires. 

Zusammenfassung 
Die in einer vorhergehenden Unteruchung erhaltenen Daten fur die viskosimetrischen 

Eigenschaften konzentrierter Polyvinylchloridlosungen in Zyklohexanon wurden auf 
der Grundlage der auf dem freien Volumen beruhenden Behandlung nach Kelley und 
Bueche interpretiert. Es wurde gezeigt, dass die Konzentrations- und Molekularge- 
wichtsabhangigkeit dieses Systems mit bemerkenswerter Genauigkeit vorausgesagt 
werden kann. Die Erweiterung der Behandlung erlaubt die Beschreibung relativ 
verdunnter Losungen. Die auf dem freien Volumen beruhenden Gleichungen wurden 
auf eine Anzahl von in der Literatur vorhandenen Daten iiber Polymerlosungen in einem 
sehr grossen Viskositats-, Temperatur-, und MolekulargewichtsBereich mit Erfolg 
angewendet. 
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